Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 179(8): 1578-1606, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33817774

RESUMO

Despite the progress in characterising the pharmacological profile of drugs of abuse, their precise biochemical impact remains unclear. The metabolome reflects the multifaceted biochemical processes occurring within a biological system. This includes those encoded in the genome but also those arising from environmental/exogenous exposures and interactions between the two. Using metabolomics, the biochemical derangements associated with substance abuse can be determined as the individual transitions from recreational drug to chronic use (dependence). By understanding the biomolecular perturbations along this time course and how they vary across individuals, metabolomics can elucidate biochemical mechanisms of the addiction cycle (dependence/withdrawal/relapse) and predict prognosis (recovery/relapse). In this review, we summarise human and animal metabolomic studies in the field of opioid and psychostimulant addiction. We highlight the importance of metabolomics as a powerful approach for biomarker discovery and its potential to guide personalised pharmacotherapeutic strategies for addiction targeted towards the individual's metabolome. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Assuntos
Fenômenos Bioquímicos , Estimulantes do Sistema Nervoso Central , Analgésicos Opioides/farmacologia , Animais , Biomarcadores , Neurofarmacologia , Recidiva
2.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34816792

RESUMO

Several viruses, including human cytomegalovirus (HCMV), are thought to replicate in the placenta. However, there is little understanding of the molecular mechanisms involved in HCMV replication in this tissue. We investigated replication of HCMV in the extravillous trophoblast cell line SGHPL-4, a commonly used model of HCMV replication in the placenta. We found limited HCMV protein expression and virus replication in SGHPL-4 cells. This was associated with a lack of trophoblast progenitor cell protein markers in SGHPL-4 cells, suggesting a relationship between trophoblast differentiation and limited HCMV replication. We proposed that limited HCMV replication in trophoblast cells is advantageous to vertical transmission of HCMV, as there is a greater opportunity for vertical transmission when the placenta is intact and functional. Furthermore, when we investigated the replication of other vertically transmitted viruses in SGHPL-4 cells we found some limitation to replication of Zika virus, but not herpes simplex virus. Thus, limited replication of some, but not all, vertically transmitted viruses may be a feature of trophoblast cells.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Trofoblastos/virologia , Replicação Viral , Linhagem Celular , Citomegalovirus/genética , Infecções por Citomegalovirus/transmissão , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Placenta/virologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...